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LE'ITER TO THE EDITOR 

Finite size scaling approach to the ID Hubbard model 

K Uzelac 
Institute of Physics of the University, POB 304, 41000 Zagreb, Croatia, Yugoslavia 

Received 4 October 1983 

Abstract. Finite size scaling is applied to the one-dimensional Hubbard model with the 
half filled energy band, at zero temperature. It is shown that, even for the scaling between 
small blocks of four, six and eight atoms, the essential singularity of the weak coupling 
limit is reproduced with remarkable accuracy, the error being less than 1 YO for the exponent 
and a few percent for the multiplicative constant. The results are discussed in comparison 
with the quantum renormalisation group approach, which fails to give the right exponent, 
and the advantages of the present method are pointed out. 

In recent years, the Hubbard model has been the subject of numerous studies, both 
for its experimental implications (Jtrome and Schulz 1982), and for its theoretical 
interest, leaving many open questions and being related to some other solid state and 
field theory models (Emery 1979). One of the important aspects of this model is its 
critical behaviour, on which we will concentrate in this letter. 

The Hubbard model was defined (Hubbard 1963,1964) to describe the correlations 
between electrons in narrow energy bands, including only the hopping of electrons 
between neighbouring atoms and the on-site interaction between them. Even such a 
simplified picture contains some essential features concerning the metal-insulator 
transition and the magnetic properties of physical systems. 

The exact solutions are available for the one-dimensional case. Further investiga- 
tions of the critical behaviour of the original model or its extended versions have been 
performed applying the approximate methods such as the parquet approximation 
(Bychkov et al 1966), bosonisation (Luther and Emery 1974), finite size extrapolations 
(Shiba and Pincus 1972), Monte Carlo simulations (Hirsch et al 1982) and different 
renormalisation group techniques (Chui and Bray 1978, S6lyom 1979, Emery 1979). 

In particular, it was expected that the zero temperature critical behaviour of the 
(simple) Hubbard model would be successfully calculated by using the quantum real 
space renormalisation group (QRG) (Drell et a! 1977, Jullien et a1 1978) which was 
efficient in studying the ground state properties of a number of spin and fermion 
models. However, this approach, when tested on the soluble case (Hirsch 1980, 
Dasgupta and Pfeuty 1981), has encountered difficulties in the determination of the 
correct critical behaviour that could not be reduced by improving the approximation. 

The aim of this letter is to propose finite size scaling as an alternative method 
which overcomes these difficulties and gives very accurate results in a technically 
simpler way. 

We limit ourselves to the same, exactly solvable problem. We consider the one- 
dimensional Hubbard model with a half filled band at T = 0. The Hamiltonian is given 
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H = t C ( C ; ~ C , + , , ~ +  C : + , . ~ C ~ , ~ )  +tu C C~~C, ,~CLC, , -~  (1) 

where c s  and c ~ , ~  are the creation and destruction operators for electrons with spin 
(+ at atom i. As shown by Lieb and Wu (1968), in this case there is no metal-insulator 
transition at any finite U >  0, the system being always insulating, but the energy gap 
vanishemhen approaching U=O with the essential singulariry of the form G = 
(8/ T>J  U / t  exp(-2d/  U ) .  The ground state has an antiferromagnetic algebraic order. 
Both QRG calculations find the existence of the essential singularity, but with the 
exponent equal to 2 instead of 1. 

Finite size scaling relies upon the ansatz (Fisher and Barber 1972) that, near the 
phase transition, any critical quantity C of the system which has finite size N in one 
direction and is infinite in the remaining directions satisfies the relation 

i.0 1.u 

c N ( U ) = c m ( U )  . f (N/‘$m) ,  (2) 

wheref is a homogeneous function and ‘$ is the correlation length for the infinite system. 
For quantum phase transitions at T = 0, there is always one infinite ‘direction’ associated 
with the time, while the correlation length is expressed through the inverse energy 
gap between the ground state and the first excited state. U denotes the critical 
parameter. Equation ( 2 )  leads to a scaling relation of the same type as one obtained 
by the scale transformation in the infinite system 

(3) 
x and v are the critical exponents of C and ‘$ respectively, while CN and C,,, denote 
the critical quantity C for two different sizes. One way of extracting the critical 
behaviour is to linearise equation (3) around the fixed point as was done for a number 
of classical 2~ and quantum I D  systems (for some references see Naghtingale 1982). 

In the present problem, this procedure can be used to establish the exponential 
behaviour of the gap, but difficulties arise when one tries to extract the essential 
singularity critical exponent. Here, we adopt the procedure proposed by Roomany 
and Wyld (1980) which appeared to be more efficient, especially when dealing with 
the essential singularities. We thus consider the Callan-Symanzik p function p = 
adl/_/dalc, where the constant of integration is the scaled gap; for size N it is equal 
to GN = N .  GN, since GN - l /eN.  a is the lattice constant, which can be expressed 
through N to obtain 

C N (  U )  = ( N/M)”/”C,( ( N / M ) ” ” u ) .  

In the limit N + 00 this formula gives a more familiar expression P = G,/ G&, which 
relates p to the critical exponent (+. For the essential singularity of the form G -  
exp(-A/ U”) it will be p = U”” / (+-A (different from that in the case of a power law 
singularity G - 1/ U,”, where p = V / x ) .  

The results for GN,,\, were obtained by the exact numerical diagonalisation of the 
Hamiltonian (1) for the chains of four, six and eight atoms. The choice of the boundary 
conditions is important, since, for the finite system, the Fermi level oscillates as a 
function of N with periodicity 4. In such a case it is useful to take the modified 
boundary conditions (Spronken et af 1981) in order to be able to compare the results 
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for different sizes. Therefore, for four and eight atoms we have taken the periodic 
and for six atoms the anti-periodic boundary conditions. The calculations were 
performed in momentum space. Considerable reduction of the matrix sizes was 
achieved due to conservation of the total momentum k ,  the total magnetic momentum 
and the total number of electrons. Thus the results for four and six atoms were 
obtained by direct diagonalisation, while 618 X 618 matrices for the N = 8 case were 
diagonalised using the Lanczos method. 

It is particularly important to choose the correct energy levels related to the gap, 
since the difference between the two lowest levels does not necessarily correspond to 
it. For the chosen boundary conditions the lowest level is four-fold degenerate for 
U = 0 and splits into four distinct levels for U # 0. The analysis of the corresponding 
eigenvectors shows that, for small U, the first and fourth level belong to the same 
momentum subspace and are split by the Umklapp process. They should, therefore, 
correspond to the charge density wave gap and be related to the conductivity. The 
second and third level make part of the other momentum subspace and can be related 
to the spin density waves. Then, representing the gap as the difference between the 
fourth and first energy levels 

( 5 )  

we calculated the f u n c t i o d  for different values of U in the interval between 0 and 
0.01 t, where the factor U /  t can be neglected. The parameter f has been taken equal 
to unity. The shape of p as a function of U corresponds to the exponential behaviour 
of G( U ) ,  with the critical exponent U and the multiplicative constant A presented in 
table 1. In comparison with the exact values, the results show very good accuracy, 
the exponent being determined with less than 1% error even for the scaling between 
chains of four and six atoms. 

6, = N (  E4 - E , )  

Table 1. Values of the essential singularity exponent U and the multiplicative constant A 
for the scaling between different sizes M and N compared with the exact value for the 
infinite system. 

4 6  0.992 6.250 
6 8  0.993 6.372 

exact ( N  = 00) 1 2n 

In comparison with QRG one should note the following. Although apparently 
simple, the present problem is complex for the QRG, since it contains two types of 
degrees of freedom: charges and spins. They scale differently and both depend on U. 
Since the QRG keeps the Hamiltonian invariant, transforming the only parameter U, 
the resulting critical exponent contains the contributions from both degrees of freedom, 
which reduces the accuracy. Within renormalisation group methods, this inconvenience 
is avoided by introducing additional parameters into the Hamiltonian, which allows 
the separation of charge density waves from spin density waves (Emery 1979, S6lyom 
1979). The advantage of the present method is that, within the one parameter 
Hamiltonian, it can treat the two degrees of freedom separately. This is made possible 
by choosing the levels corresponding only to the charge degrees of freedom and 
applying the scaling by keeping invariant the charge density wave gap. 
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In conclusion, by studying a one-dimensional example, we have shown that finite 
size scaling could be very efficient in studying the Hubbard model, both because of its 
accuracy and its ability, in comparison with QRG, to separate different degrees of 
freedom. 

I thank Professors BariSiC, Emery and Friedel for useful and very stimulating dis- 
cussions. This work was supported in part by the Yu-US DOE no 438. 
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